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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Letters to the Editor 

Generalized nonrelativistic Lamb-shift theory 

Abstract. We report a natural all-order decorrelation procedure for the inter- 
action of a single two-level atom with all modes of the radiation field which 
replaces the semiclassical boson approximation for the atom by an exact 
fermion treatment. In consequence, the spontaneous emission of the semi- 
classical theory is extended to include stimulated emission, a semiclassical 
Lamb-type shift is explicitly replaced by a shift satisfying the Bethe formula 
manifestly due to vacuum fluctuations, and there can be two intensity-depen- 
dent terms, one of which generalizes the Bethe formula. 

From the Hamiltonian density for the dipole interaction 

x, t )  = - er( s, t ) .  e( x, t)  (1) 
in which r ( x ,  t )  is the dipole density operator and e(%, t )  is a field operator (both 
operators taken in Heisenberg representation), it is possible to reach the classical 
integral equation for the classical dipole density 

P ( x ,  w) = CS(x-  x,)Pi(w) 

P ( x ,  w) = a ( w ) . z a ( x -  x l ) ( E e x t ( x ,  U)+ 

at frequency w 
t 

F(x, 8‘; o ) . P ( x ’ ,  w) dx’} (2) 

(cf. Bullough et al. 1968, Obada and Bullough 1969). Here a ( w )  is the Kramers- 
Heisenberg polarizability tensor and Pf(w) is the dipole (at frequency w) induced in 
the ith particle located at x i  by the field EeXt( x, U). This field is ‘external’ : it is a 
semiclassical field used to probe the system of matter and second quantized field 
coupled by the dipole interaction (1). Consequently, although (2) depends on all 
orders of the quantized field e(%, t) ,  it is linear in the probe Eext(x, U). 

1 

The photon propagator F(x, x’; w) is the classical quantity 

(3) 
F(x, x’; U)% (G7V+ko2U)exp(iKoIx-x’l)lx- x’1-l 

k, wc-1. 

U is the unit tensor: it describes the Hertz dipole field at x due to the source 
P( x’, U) dx’ at x’. It emerges from the field e(%, t )  in (1) (developed in interaction 
representation) because of the result of Jordan and Pauli (1928) that the unequal 
space-time commutator of two free-field operators is a c number. The causal part of 
the Fourier transform of this is precisely F( x, x’ ; U )  : 

00 

1 i h- l [ e (  x, t ) ,  e( x’, t’)]O(t - t ‘ )  exp{ - i w(t  - t’)> dt’ = F( x, x’; U )  (4) 
- m  

(d(7)  is the step function). 
L41 
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A crucial feature of the argument which reduces the interaction (1) to the solution 
of ( 2 )  is a systematic decorrelation procedure which treats the dipole operators er,(t)  
as boson operators. We specialize the discussion to spinless two-level atoms with 
non-degenerate states 10) (the ground state) and Is) and energies E ,  
and E,: E,-E, = Aw,. We choose the states so that ros = rso  = x o s u  (say) where 
U is a unit vector. At t = 0 we can then set 

er = exo,u(a+ +a-) (5 1 
where CT* = &(uzkiay)  and the matrices U*, uy are Pauli spin matrices. The  
annihilation and creation operators a- and a+ satisfy the fermion commutation and 
anti-commutation relations [a-, a+] = a,, [a-, U+]+ = 1. As boson operators 
they would need to satisfy [a-, a+] = 1. In  this case, with crz = U +  +U- in inter- 
action representation with respect to the free particle Hamiltonian H ,  = &h~,a,, 
the commutator iA-l[a,(t), uz(t’)] is also a c number and there is a polarizability 
which proves to be 

m 1- m 
e2xos2 iA-l[al(t), a,(t’)]e(t-t‘) expi- i ~ ( t - t ‘ ) }  dt’ 

= e2x,,2h-12w,(w,2 - w 2 ) - I  (6) 
exactly the Kramers-Heisenberg result. The  integral equation ( 2 )  now follows 
exactly for a system of many two-level atoms satisfying boson commutation relations; 
although these are incorrect the classical result (2) is held to be a good approximation 
for few photons inducing few excitations amongst many atoms (cf. e.g. Hopfield 1958): 
it is presumably good, too, for an almost fully inverted dielectric with a very few atoms 
in their ground states and very few photons. 

For a single particle at x i ,  (2) is immediately but only formally soluble : it reduces to 

when E e x t ( x ,  w )  is parallel to the unit vector U of (5). Here 

J0(w) 2 J F(x, x’; w )  S(X- x’) d d  = Jo(w)U (7b) 

and must be a scalar multiple of the unit tensor if it exists at all; thus the solution of 
(7a) is then 

P,S(X- $1) = S(X- XI)E,Xt(% w )  

y ( 0 )  = a(w) ( l  -Jo(w) . (w)) - ’ .  (8) 
The  scalar quantity Jo(w) is divergent with convergent part precisely +ikO3. The  

interpretation Jo(w) E +ikO3 is essential for internal consistency in the optical 
scattering theory (Bullough et al. 1968, Bullough and Hynne 1968). Further, for the 
two-level atom, y( U )  has a resonant scattering width which is the Weisskopf-Wigner 
(1930) spontaneous emission width ro = +e2x0s2fi-1ws3c-3 since 

y(w)  = e2x0s2h-12w,(w,2 - w2 - Qik03e2x0s2w,fi-1)-1 ( 9 4  - e2xOs2h- l (w,  - o-Qiw ,3c -3e2xos2h-~) -1  (9b) 
close to resonance. Thus the spontaneous emission is a classical result ((8) with (9) is 
obviously the driven classical Lorentz oscillator) and the Lamb shift is either con- 
cealed in the divergent part of Jo(w)  or has been wholly excluded from the theory by 
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the boson assumption for the dipole operators. In  fact the Jo(w) given by (7b) is of 
this form and infinite apparently only because of the assumption of a dipole interaction 
in (1). A dipole approximation cannot be acceptable for a one-particle self-energy, but 
when Jo(w)  .(U) is corrected the theory coincides with the semiclassical Lamb shift 
theory recently reported by Crisp and Jaynes (1969). 

Although (2) follows exactly from a second quantized theory taken to all orders 
in the internal field operators e( x, t )  (once the boson assumption for the dipoles is 
made) it is plain that there can be no stimulated emission: for only the c number 
commutator of two field operators with the transform (4) appears in the theory and 
this cannot depend on the field states. But it is also clear that the classical expression 
(2) cannot be a good approximation to any second quantized one-atom theory when 
it is valid only for a few excitations compared with the number of particles. We have 
therefore obtained a natural analogue of (7) for a single non-degenerate two-level 
atom which retains the fermion commutation relations for the dipole operators. 

It is not sufficient now simply to appeal to the boson character of the photons and, 
for a tractable calculation, products of field operators must be decorrelated. We find 
that there is a natural choice for doing this which, however, exhibits the field operators 
as the expectation value of the anti-commutator of the fields 

3i-l (phl[e(x, t ) ,  e($’, t’)]+ Iph). (10) 
This depends on the field states Iph). At the same time, beyond first order, ~ ( w )  
becomes the Fourier transform of a c number anti-commutator : 

.(U) +.+(U)  = 2oe2xo,2hi1(ws2-w2)-1 (11) 
(note the w in the numerator compared with (6)). Next, y(w)  changes to 

y + ( w )  = - 2 ~ , e ~ x ~ ~ A - ~ ( p ~ ~  -poo)(ws2 - w2 -2we2x0,2H-1J0+(w))-1 (12) 
where p s s  - p o o  = - 1 for atoms initially in their ground states and is + 1 for those 
initially in their upper states. 

The  scalar number J o + ( w )  depends on the frequency w = ck ,  of the external 
field and on the field occupation numbers n, of the total system (matter plus field) 
probed by that external field. We find that 

4we2xo,2A-11m(JO+(~)) = (nko  + 1)9e2h-1k03x,,2 (13) 
where nko is the (isotropic) field occupation number at Ikl = KO. Close to resonance 
this means that (9) has the resonance width (nko+ l)r, (if we can simply set w + w, 
in (13)). Thus the  stimulated emission is now appearing in conventional form. 

The real part of J o + ( w )  depends on all the n,; but when, for example, 
n, = l cc12  = constant a < k < b, = 0 otherwise (and is isotropic with b > w) 

2we2x0s2h-1 Re(Jo+(w)) = - e2xo,2h-12w(4/3~)Ko3 ln(m,c2/hw) 
-e2xo,2h-12w(2/3rr)[Koj~~2(b2 - 2) + K o 3 j ~ j 2  ln((c2b2 - w2)/1w2 -c2a21)]. (14) 

In  order to reach the first logarithmic term we have cut off the integration at the 
reciprocal Compton wavelength k, = mech-l. If it is possible simply to set w -+ ws 
in (14), the correction to liw, is 

1: - e2xo,2(4/3rr)w,3c-3 ln(m,c2/hw,) 
-e2x.os2(2/3~)[w,c-11a12(62-u2)+ w,3c-31c12 In { (c2b2-  wS2) / (ws2-c2a2)} ]  

(15) 
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(for cb > w ,  > ca). The first logarithmic term is twice that appearing in the non- 
relativistic Bethe (1947) formula for the Lamb shift. This is to be expected since 
Bethe’s shift AEB‘” corrects both E, and E ,  : since both levels are non-degenerate 
E,  -+ E, - AEB‘’), E,, -+ E, + The second logarithmic term generalizes the 
Lamb shift to include the effect of field occupation numbers. Evidently it vanishes 
for a symmetric distribution of field modes for which c2b2-wS2 = wS2-c2u2. The 
remaining term does not so vanish: it obviously generalizes the electromagnetic mass 
shift in the vacuum to include the dependence on photon occupation numbers, but 
(see below (18)) should be observable in a sufficiently intense isotropic field. 

Three other results are of interest: first since the Bethe form of the Lamb shift 
appears in (12) in consequence of (15) (whether real photons are present or not) we 
do not now expect any semiclassical contribution to this shift of the type occurring 
in (9). I n  fact that (linearly) divergent part of ( 7 4  apparently identifiable with .the 
term of Crisp and Jaynes (1969) is explicitly eliminated in (12). It is replaced by 
two terms both manifestly depending on vacuum fluctuations since 

[e($, t ) ,  e($’, t’)]+ = [e($,  t ) ,  e($‘, t’)]+2e(x’, t’) e($, t ) .  (16) 

One term is the logarithmic Bethe term, the other is quadratically divergent. Such 
divergence is associated with the A2 term (effectively concealed in the interaction (1)) 
in a theory of the Lamb shift of the ground state reported elsewhere (Bullough 1969). 
Both the linearly divergent (semiclassical) and quadratically divergent terms there 
accompany the logarithmic Bethe term and are interpreted as mass renormalizations. 

A second result is a classical limit of the theory. We consider a single mode at the 
atomic resonance frequency w 6  with the same polarizatioh U as the external field: 
the classical amplitude is E(w)  so that 

2r2E2 w 
nk = ( 6(k- Fz,k,). 

hw, 

Ignoring both the damping and the vacuum terms we find that 

e22w,h-1~o,2(~ ,2  - w 2 )  
Y + ( W )  = (ws2-  w ~ ) 2 - 4 w 2 e 2 x o , 2 ~ 2 ( w S ) h - 2 ’  (17b) 

This resonates at w =i w s  & eo, with an effective Rabi frequency eog = ex,,#i-l E(w,).  
This result agrees with that we can obtain for a single two-level atom coupled to a 
strong semiclassical field (this problem is soluble in closed form within the ‘rotating- 
wave approximation’ in which us2- w2 2: 2wS(0,- w )  (e.g. Lamb 1964). 

More generally, if the classical modes are distributed with the number 
c-lg(w‘-w,)  dw’ in dw‘ we find that, in the rotating-wave approximation, us shifts 
to w , - h - l A E  where (P denotes principal value) 

h - l A E  = eYi-2xoS2{P E2(w’)g(w’- ws)(w’  - w ) - l  dw’+ inE2(w)g(o - U,))  (18) 

-results which are comparable with those of Brossel (1964). The real energy shift 
vanishes for w = w ,  and symmetric g(w’ -  U,) E2(w’) and there is no term like the 
quadratic term in (15). This is a consequence of the extremely anisotropic character 
of field occupations like (17a). 
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Thirdly, we note that if y+(o) is in any sense an effective one-particle polariza- 
bility in a many-particle system then both (13) and (18) imply exponential growth, 
with an exponent proportional to the intensity, in an amplifying medium (for which 
P s s - P o 0  = 1). 

The  theory will be published in detail elsewhere. 

Department of Mathematics, 
UMIST, Sackville Street, 
Manchester 1, M60 lQD, 
England. 

R. K. BULLOUGH 
P. J. CAUDREY 

7th January 1971 
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Comments on the paper High transverse momenta observed 
in air shower cores 

Abstract. The recent findings of the Sydney air shower group concerning the 
existence of high-transverse-momentum events in air shower cores are 
disputed. It is shown that the multiple cores which are interpreted as 
large-transverse-momentum events are likely to be simulated by the de- 
tection fluctuations quoted by the Sydney group itself. 

The  Sydney air shower group (McCusker et al. 1969, Bakich et al. 1969, Bakich 
et al. 1970 to be referred to as I, 11, and I11 respectively) have claimed that they have 
found evidence for the existence of large-transverse-momentum events in air shower 
cores. The  transverse momenta ( p , )  reported range up to more than 100 GeV/c and 
it was these findings which lead them to their widely known quark search. The 
Sydney evidence for large p ,  is based primarily on the observation of multiple cores 
in the electron distribution of showers recorded by means of a 16 m2 scintillation 
counter hodoscope consisting of 64 quadratic elements. Shower cores with well 
separated peaks have been observed and, using electromagnetic cascade theory, the 
transverse momenta necessary to explain the observed separation of peaks have been 
estimated. 

Since 1965 we have recorded shower cores in the same region of primary energy 
to lo1' eV) employing a 32 m2 neon hodoscope. This detector has an excellent 

stability and uniformity of response and we are able t o  measure particle densities up 


